
Towards real-time finite element simulation on GPU

V-Q Dinh1, Yves Marechal1, 2, Gerard Meunier1, 2

1 Univ. Grenoble Alpes, G2Elab, F-38000 Grenoble, France,

2 CNRS, G2Elab, F-38000 Grenoble, France

In this paper, we introduce a parallel assembly technique on NVIDIA CUDA GPUs for finite element method (FEM) applied
in the magnetic field computation. Basically, each thread calculates the integration associated with an element. To avoid
memory conflicts, we introduced a fast procedure based on sorting and rearrangement of elementary non-zero (NZ) entries.
Finally, a reducing process is executed to assemble NZ in the stiffness matrix. This algorithm does not require any preprocessing
on mesh but also take advantage of parallel computing power of GPU. In our tests, using this parallel assembly improved the
speed assembling up to 20x times faster.

Index Terms—CUDA, GPU, FEM, assembly, sorting

I. INTRODUCTION

The finite element method is a well-used numerical
technique for finding approximate solutions in the
electromagnetic computation field. We consider the problem
of finding a function u: Ω→R that satisfies:
 ℒ(�) = � (1)
in the domain Ω with some boundary conditions on the
boundary ∂Ω. In which, Ω is the spatial n-dimension domain
Rn, ℒ is a general linear differential operator, f is a source
term. The FEM begins by the subdivision of domain Ω into
a set of finite elements and defines an approximate function,
note u, based on the nodal variables ui associated with Ni

geometric nodes: ∑
=

=≈
iN

i
ii uxhuu

1

)(

hi(x) denoting spatial distributions associated with the
approximation value ui on ith node.

Equation (1) is transformed by FEM into a linear system
of equations such as:

Fu =Α (2)

A is the stiffness matrix, F is the forcing vector, u is the
approximation vector of unknown nodal variables.

The objective of this work is to push computation on
GPU as far as possible in the pursuit of “pseudo real-time”
simulation goal. In this paper, we will concentrate on the
assembly process. In the full paper, solving process will be
equally presented.

II. GENERAL CONSIDERATION ON ASSEMBLY

In practice, each entry Aij of the matrix A is assembled
from contributions of all elements that contain both nodes ui
and uj and similarly each entry fi of the vector F is
assembled from all elements that contain ui.

[] [] [] []∑∑
=

=
=

==
ikeE

ke

k
e

i

jleE
ikeE

lke

lk
e

ji FFAA

),(
,

),(
),(

,,

,, ;
(3)

Ae and Fe are the elementary matrix and vector based on
the integration of operator ℒ and function f in the space of
element. E is the element connectivity data, for instance,
E(e,k) corresponds to ith global degree of freedom (DOF)
that associates with the kth node of eth element. The matrix
A is usually sparse with a few non-zero entries on each row.

There are a lot of proposed strategies for GPU assembly:
mesh coloring to partition elements into non-overlapping
sets [4], graph partitioning and reduction list, local matrices
[3], assembly by NZ using global, local, shared memory [1],
patching mesh [2]. These approaches generally use a step of
pre-computing or reorganization of the nodes and elements
of the mesh. Consequently, this affects the overall
performance. Our alternative method does not require any
preprocessing on mesh but uses a sorting method by NZ’s
index of rows for separating parallel threads.

III. ASSEMBLY PARALLEL ON GPU

In this paragraph, we illustrate the assembly algorithm of
stiffness matrix A in the proposed diagram below:

a
b

c

Fig.1. The global assembly algorithm uses 3 kernels CUDA: integration by
element, sorting by the index of rows, reducing.

First, in step “a”, we assign each parallel thread to
compute the integration of each element. The results are
saved into a temporary matrix A described in the coordinate
(COO) format [8] with 3 arrays: its row index, column index
and value. The integration by element is straightforward and
ensures load balancing between parallel threads. So we kept
the original code and only changed the way to access
database that are handled on global memory of GPU. Since

the mesh is unstructured, the coalesced reading on global
memory [9] is impossible if not arrangement the database.
However, the matrix A is saved on the global memory by a
coalesced way. With a mesh of Ne elements and nd DOFs
associated per element, so the dimension of an array of A is
(Ne * nd

2).
Next, in step “b”, we use a parallel sorting method for

rearranging NZ entries by its row index. In general, the
sorting implementation is suitable on GPU and there are a
lot of effective sorting methods proposed in the literature. In
our test, we used the radix sorting algorithm in the Cudpp
library [6] coded by jCuda [7]. As a result, the NZ entries
with same index of row are saved adjacently on the memory
that facilitates the coalescent access in the next.

In step “c”, each parallel thread is assigned to a memory
segment that corresponds to a row and performs a reducing
process if NZ entries of that row have the same index of
column. In this step, the share memory on GPU facilitates
the fast accessing on the data and improves the reduction.
Finally, we obtain the stiffness matrix A described in the
Compressed Row Storage (CRS) format [9] by 3 arrays: row
pointer, column index and values. The vector F is computed
by a similar way.

IV. TEST

We perform some tests in the linear static magnetic fields
[5] in which the equations are written as:

0.
0

=∇
=×∇

B

JH

(4)

=
H

H
B

r 0

0

µµ
µ in air

in magnetically linear material
The geometries and physical properties are described in the
Fig.2 and Fig.3 below:

a) b)

Fig.2. A electrical cylindrical oven’s geometry (a): metal µr = 100; coil with
a continuous current density 1A/mm2, a electromagnet µr = 1000; Potential
iso-value in a quarter of domain (b)

a)
100

40

20

coil

armature

b)

Fig.3. An actuator’s geometry (a) armature µr = 1000; coil 5A/mm2;
Potential iso-value in the domain (b)

The tests are applied on the meshes with variable density
of nodes based on these domains. The information of
meshes is shown in the TABLE I. About the hardware, all
experiences are executed in a platform equipped a CPU Intel
Xeon 2.67 GHz tested with a single core and a GPU

NVIDIA Tesla C1060 240 cores CUDA 1.3 GHz. The
original code of FEM on CPU is developed in JAVA v7.4
environment. Therefore, the parallel code of the assembly
by CUDA GPUs is ported into JAVA by jCuda. The
databases on the GPUs memory are saved in single precision
(32 bit) to adapt to maximal performance of GPUs [9]. The
results of stiffness matrix A and vector F are compared
between CPU and GPU program for checking the
correctness with the relative norm of difference about 10-6.

TABLE I
THE INFORMATION OF MESHES WITH NUMBER OF DOFS, NUMBER OF

ELEMENTS AND NUMBER OF NNZ ENTRIES

Mesh NDOF Ne NNZ

Oven_1 6,792 13,608 47,132

Oven_2 23,373 46,762 162,917

Actuator_1 11,211 22,580 78,151

Actuator_2 32,945 65,984 230,425

Actuator_3 61,617 123,392 430,993

The comparison of running times on CPU and GPU is
shown in the TABLE II:

TABLE II
ASSEMBLY PERFORMANCE, IN MILLISECOND

Mesh GPU CPU Speed up

Oven_1 15 172 11.47

Oven_2 45 1,021 22.69

Actuator_1 31 483 15.58

Actuator_2 47 1,014 21.57

Actuator_3 109 1,872 17.17

V. CONCLUSION

Our method improves the speed assembly FEM method
and is suitable not only for the electromagnetic field, but
also for many other fields. The advantages of this assembly
algorithm are the load balancing, the suitable
implementation of sorting and the scalability. One drawback
is the large requirement of GPU global memory. On
perspective, the mesh can be divided into sub-mesh to
partially perform the assembly in the shared memory on
GPU. Considering the solving process, the work in the full
paper shows equivalent speed up result.

REFERENCES
[1] C. Cecka, A. J. Lew, and E. Darve, “Assembly of finite element

methods on graphics processors,” International journal for numerical
methods in engineering, vol. 85, no. 5, pp. 640–669, 2011.

[2] Z. Fu, T. James Lewis, R. M. Kirby, and R. T. Whitaker,
“Architecting the finite element method pipeline for the GPU,”
Journal of Computational and Applied Mathematics, vol. 257, pp.
195–211, Feb. 2014.

[3] I. Kiss, S. Gyimothy, Z. Badics, and J. Pavo, “Parallel Realization of
the Element-by-Element FEM Technique by CUDA,” IEEE
Transactions on Magnetics, vol. 48, no. 2, pp. 507–510, Feb. 2012.

[4] J. Zhang and D. Shen, “GPU-Based Implementation of Finite Element
Method for Elasticity Using CUDA,” 2013, pp. 1003–1008.

[5] M. Kuczmann, “Potential Formulations in Magnetics–App lying the
Finite Element Method,” Lecture notes, Laboratory of
Electromagnetic Fields,” Szechenyi Istvan”, University, Gyor,
Hungary, 2009.

[6] [Online] www.gpgpu.org
[7] [Online] www.jcuda.com
[8] A. Dziekonski, P. Sypek, A. Lamecki, and M. Mrozowski, “Finite

element matrix generation on a GPU,” Progress In Electromagnetics
Research, vol. 128, pp. 249–265, 2012.

[9] [Online] http://docs.nvidia.com/cuda/cuda-c-programming-guide

