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In this paper, we introduce a parallel assembly technique on NVIDIA CUDA GPUs for finite element method (FEM) applied 
in the magnetic field computation. Basically, each thread calculates the integration associated with an element. To avoid 
memory conflicts, we introduced a fast procedure based on sorting and rearrangement of elementary non-zero (NZ) entries. 
Finally, a reducing process is executed to assemble NZ in the stiffness matrix. This algorithm does not require any preprocessing 
on mesh but also take advantage of parallel computing power of GPU. In our tests, using this parallel assembly improved the 
speed assembling up to 20x times faster. 
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I. INTRODUCTION 

The finite element method is a well-used numerical 
technique for finding approximate solutions in the 
electromagnetic computation field. We consider the problem 
of finding a function u: Ω→R that satisfies: 
 ℒ(�) = � (1) 
in the domain Ω with some boundary conditions on the 
boundary ∂Ω. In which, Ω is the spatial n-dimension domain 
Rn, ℒ is a general linear differential operator, f is a source 
term. The FEM begins by the subdivision of domain Ω into 
a set of finite elements and defines an approximate function, 
note u, based on the nodal variables ui associated with Ni 
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hi(x) denoting spatial distributions associated with the 
approximation value ui on ith node. 

Equation (1) is transformed by FEM into a linear system 
of equations such as: 

Fu =Α  (2) 

A is the stiffness matrix, F is the forcing vector, u is the 
approximation vector of unknown nodal variables. 

The objective of this work is to push computation on 
GPU as far as possible in the pursuit of “pseudo real-time” 
simulation goal. In this paper, we will concentrate on the 
assembly process. In the full paper, solving process will be 
equally presented. 

II. GENERAL CONSIDERATION ON ASSEMBLY 

In practice, each entry Aij of the matrix A is assembled 
from contributions of all elements that contain both nodes ui 
and uj and similarly each entry fi of the vector F is 
assembled from all elements that contain ui. 
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Ae and Fe are the elementary matrix and vector based on 
the integration of operator ℒ and function f in the space of 
element. E is the element connectivity data, for instance, 
E(e,k) corresponds to ith global degree of freedom (DOF) 
that associates with the  kth node of eth element. The matrix 
A is usually sparse with a few non-zero entries on each row. 

There are a lot of proposed strategies for GPU assembly: 
mesh coloring to partition elements into non-overlapping 
sets [4], graph partitioning and reduction list, local matrices 
[3], assembly by NZ using global, local, shared memory [1], 
patching mesh [2]. These approaches generally use a step of 
pre-computing or reorganization of the nodes and elements 
of the mesh. Consequently, this affects the overall 
performance. Our alternative method does not require any 
preprocessing on mesh but uses a sorting method by NZ’s 
index of rows for separating parallel threads. 

III.  ASSEMBLY PARALLEL ON GPU 

In this paragraph, we illustrate the assembly algorithm of 
stiffness matrix A in the proposed diagram below:  

a
b

c

 
Fig.1. The global assembly algorithm uses 3 kernels CUDA: integration by 
element, sorting by the index of rows, reducing. 

First, in step “a”, we assign each parallel thread to 
compute the integration of each element. The results are 
saved into a temporary matrix A described in the coordinate 
(COO) format [8] with 3 arrays: its row index, column index 
and value. The integration by element is straightforward and 
ensures load balancing between parallel threads. So we kept 
the original code and only changed the way to access 
database that are handled on global memory of GPU. Since 



the mesh is unstructured, the coalesced reading on global 
memory [9] is impossible if not arrangement the database. 
However, the matrix A is saved on the global memory by a 
coalesced way. With a mesh of Ne elements and nd DOFs 
associated per element, so the dimension of an array of A is 
(Ne * nd

2). 
Next, in step “b”, we use a parallel sorting method for 

rearranging NZ entries by its row index. In general, the 
sorting implementation is suitable on GPU and there are a 
lot of effective sorting methods proposed in the literature. In 
our test, we used the radix sorting algorithm in the Cudpp 
library [6] coded by jCuda [7]. As a result, the NZ entries 
with same index of row are saved adjacently on the memory 
that facilitates the coalescent access in the next.  

In step “c”, each parallel thread is assigned to a memory 
segment that corresponds to a row and performs a reducing 
process if NZ entries of that row have the same index of 
column. In this step, the share memory on GPU facilitates 
the fast accessing on the data and improves the reduction. 
Finally, we obtain the stiffness matrix A described in the 
Compressed Row Storage (CRS) format [9] by 3 arrays: row 
pointer, column index and values. The vector F is computed 
by a similar way. 

IV.  TEST 

We perform some tests in the linear static magnetic fields 
[5] in which the equations are written as: 
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in magnetically linear material 
The geometries and physical properties are described in the 
Fig.2 and Fig.3 below: 

a) b)  

Fig.2. A electrical cylindrical oven’s geometry (a): metal µr = 100; coil with 
a continuous current density 1A/mm2, a electromagnet µr = 1000; Potential 
iso-value in a quarter of domain (b)  
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Fig.3. An actuator’s geometry (a) armature µr = 1000; coil 5A/mm2; 
Potential iso-value in the domain (b) 

The tests are applied on the meshes with variable density 
of nodes based on these domains. The information of 
meshes is shown in the TABLE I. About the hardware, all 
experiences are executed in a platform equipped a CPU Intel 
Xeon 2.67 GHz tested with a single core and a GPU 

NVIDIA Tesla C1060 240 cores CUDA 1.3 GHz. The 
original code of FEM on CPU is developed in JAVA v7.4 
environment. Therefore, the parallel code of the assembly 
by CUDA GPUs is ported into JAVA by jCuda. The 
databases on the GPUs memory are saved in single precision 
(32 bit) to adapt to maximal performance of GPUs [9]. The 
results of stiffness matrix A and vector F are compared 
between CPU and GPU program for checking the 
correctness with the relative norm of difference about 10-6. 

TABLE I 
THE INFORMATION OF MESHES WITH NUMBER OF DOFS, NUMBER OF 

ELEMENTS AND NUMBER OF NNZ ENTRIES 

Mesh NDOF Ne NNZ 

Oven_1 6,792 13,608 47,132 

Oven_2 23,373 46,762 162,917 

Actuator_1 11,211 22,580 78,151 

Actuator_2 32,945 65,984 230,425 

Actuator_3 61,617 123,392 430,993 

The comparison of running times on CPU and GPU is 
shown in the TABLE II: 

TABLE II 
ASSEMBLY PERFORMANCE, IN MILLISECOND 

Mesh GPU CPU Speed up 

Oven_1 15 172 11.47 

Oven_2 45 1,021 22.69 

Actuator_1 31 483 15.58 

Actuator_2 47 1,014 21.57 

Actuator_3 109 1,872 17.17 

V. CONCLUSION 

Our method improves the speed assembly FEM method 
and is suitable not only for the electromagnetic field, but 
also for many other fields. The advantages of this assembly 
algorithm are the load balancing, the suitable 
implementation of sorting and the scalability. One drawback 
is the large requirement of GPU global memory. On 
perspective, the mesh can be divided into sub-mesh to 
partially perform the assembly in the shared memory on 
GPU. Considering the solving process, the work in the full 
paper shows equivalent speed up result. 
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